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Genomically  identical  cells  have long  been  assumed  to  comprise  the  human  brain,  with  post-genomic
mechanisms  giving  rise  to its enormous  diversity,  complexity,  and  disease  susceptibility.  However,  the
identification  of neural  cells  containing  somatically  generated  mosaic  aneuploidy  – loss  and/or  gain  of
chromosomes  from  a euploid  complement  –  and  other  genomic  variations  including  LINE1  retrotrans-
posons  and  regional  patterns  of  DNA  content  variation  (DCV),  demonstrate  that  the  brain  is  genomically
osaicism
omatic mutation
NS
NV

heterogeneous.  The  precise  phenotypes  and functions  produced  by  genomic  mosaicism  are  not  well
understood,  although  the  effects  of  constitutive  aberrations,  as observed  in  Down  syndrome,  implicate
roles  for  defined  mosaic  genomes  relevant  to cellular  survival,  differentiation  potential,  stem  cell  biology,
and brain  organization.  Here  we  discuss  genomic  mosaicism  as  a feature  of  the  normal  brain  as  well  as a
possible  factor  in  the  weak  or complex  genetic  linkages  observed  for many  of  the  most  common  forms
of neurological  and  psychiatric  diseases.
© 2013 Elsevier Ltd. All rights reserved.
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. Introduction (hyposomy) in a cell, although the full karyotype for that cell may
be unknown relative to the germline chromosomal complement.
Aneuploidy is a gain (hyperploidy) or loss (hypoploidy) of chro-
osomes such that the resulting chromosome number is not an

xact multiple of the haploid complement. A related term, aneu-
omy, reflects specific chromosome gains (hypersomy) or loss

∗ Corresponding author at: The Scripps Research Institute, 10550 N. Torrey Pines
d.,  DNC-118/Chun, La Jolla, CA 92037, USA. Tel.: +1 858 784 8410.

E-mail address: jchun@scripps.edu (J. Chun).

084-9521/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.semcdb.2013.02.003
Aneuploidies and aneusomies within an organism can be defined
as either constitutive, meaning that changes begin in the germline
or early embryogenesis, resulting in a conserved change in virtually
all cells of an organism; or mosaic,  which indicates somatic changes
in individual cells that result in mixed aneuploid and euploid forms

with varied prevalence throughout an organism. There are several
well-known pathophysiological chromosomal disorders including
Down (trisomy 21), Edwards (trisomy 18), and Patau (trisomy 13)
syndromes, which are most commonly constitutive in >95% of cases

dx.doi.org/10.1016/j.semcdb.2013.02.003
http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
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1–5], along with sex chromosome aneuploidies like Klinefelter’s
XXY) and Turner’s (monosomy of X) syndromes that also result
n abnormal development and behavior [6–10]. Mosaic disorders
ffecting the brain have also been described, such as mosaic varie-
ated aneuploidy (MVA) [11–15].

While such chromosomal aberrations have been long associ-
ted with neurogenetic disorders, chromosomal aneuploidies or
neusomies are also known to be a normal feature of the brain,
anifesting as complex mosaics [16–28].  In the central nervous

ystem (CNS), mosaic aneuploidies were first identified in the cere-
ral cortex of normal developing mice [23], a result that has been
xtended throughout the neuraxis and to all vertebrate species
hus far examined [21,22,25],  including non-diseased humans
19,24,25,27,28]. Moreover, these changes have been a harbinger
or other genomic alterations, generally referred to as DNA content
ariation (DCV) [29] 2010). Here we discuss genomic mosaicism in
he non-diseased brain, and how it may  contribute to human brain
iseases.

. Genomic diversity in cells of the normal brain: mosaic
neuploidy and DNA content variation (DCV)

.1. Detection techniques

As early as 1902, Theodor Boveri identified chromosome aber-
ations in cancerous tumors, demonstrating the existence of living,
neuploid cells [30]. The simplest evaluations of chromosome num-
ers merely count chromosomes in metaphase spreads, when the
ondensed state of the chromatids allows for visualization, as
ell as identification of balanced and unbalanced translocations

y Giemsa staining [31]. Despite the simplicity of this assay, it
s notable that the correct human complement of chromosomes

as not established until 1956 [32], some three years after report
f the double helix [33], underscoring ambiguities that are asso-
iated with chromosome counts. A definitive modern technique
alled spectral karyotyping, or SKY, relies on the hybridization
f genomic fragments labeled with distinct fluorochromes to the
etaphase spreads of single cells and the subsequent identification

f each chromosome pair or sex chromosomes [34] (Fig. 1A). These
trategies require condensed chromosomes, and as such cannot
e definitively used on interphase or non-mitotic cells. Fluores-
ent in situ hybridization (FISH) also employs hybridization of a
robe against a defined but limited chromosomal region (“point
robes”), which can be used to assess aneusomies in single inter-
hase cells using a fluorescent or enzymatic readout (Fig. 1B).
ulticolor FISH allows for simultaneous evaluation of several chro-
osomes or different regions along a single chromosome, including

uantification of FISH signal intensity [35]. However, there are tech-
ical limitations that can lead to false-positive and false-negative
robe hybridization, which require careful controls to identify true
neuploidy versus artifactual hybridization, such as pairing of chro-
osome homologs that may  lead to the incorrect interpretation

f a “pseudo monosomy” [27]. A modification of point probe FISH
s interphase chromosome-specific multicolor banding (ICS-MCB)

herein a set of specific paints derived from microdissected chro-
osomes labels the target chromosome with a distinct spectral

attern for the simultaneous visualization of several regions of the
hromosome [36,37]. This technique has not been widely used and
ay  depend on the cell type and/or age of the interrogated chro-
atin. An independent technique for chromosomal copy number

nalysis is comparative genomic hybridization (CGH) and array

GH [38,39].  CGH requires the hybridization of test genomic sam-
les to a representation of a standardized genome, and allows
or copy number analyses from tissue samples or prenatal cyto-
enetic samples. Previously, the requirement of a relatively large,
elopmental Biology 24 (2013) 357– 369

genomically homogenous set of cells limited the use of CGH in iden-
tifying mosaic aneuploidy. While Ballif and colleagues reported the
detection of mosaicism even at levels of 10–20% [40], its effective-
ness in CNS samples remains to be determined.

Single cell approaches that are currently in development will
help to lower the detection threshold. The genome from single
cells isolated by laser microdissection, flow cytometry, or other
techniques could be amplified in a uniform and unbiased man-
ner (e.g., using multiple displacement amplification (MDA) [41]) for
analysis by single-cell CGH or quantitative PCR for target genomic
regions. Even more definitively, the resulting amplicons from
single-cell MDA  could serve as a template for genomic sequenc-
ing, an approach being pursued for cancer cells [42,43],  as well as
partial sequencing from neurons [44]. The promise of these tech-
niques is currently tempered by a range of factors including use of
adequate control genomes, the current low throughput of the tech-
nique that is critical in view of the one trillion cells that make up
the human brain, and sufficient information storage limitations for
the terabytes of data produced by whole-genome sequencing.

A distinct approach to assessing genomic uniformity is DNA flow
cytometry that has a long history of identifying cells with vary-
ing DNA content associated with phases of the cell cycle [45,46].
The highly integrated and physically connected nature of the brain
(e.g., its synaptic neuropil) makes analyses of single cells diffi-
cult and incomplete, thus limiting prior flow cytometry efforts for
studying the brain. Modifications of this approach to interrogate
isolated nuclei rather than intact cells from the brain for DNA con-
tent (Fig. 1C) has identified brain cell populations with a surprising
range of DNA content (Fig. 1D). This was manifested as an overall
increase in DNA content within cerebral cortical neurons compared
to cerebellar neurons from the same individual, demonstrating the
pervasive existence of normal human brain cells having DNA  con-
tent variation (DCV) (Fig. 1E) [29]. DCV in the frontal cortex averages
a gain of 250 Mb,  with NeuN-positive neurons showing signifi-
cant increases compared to non-neuronal nuclei. Importantly, DCV
appears to encompass myriad forms of mosaic aneuploidy that exist
in both the cerebral cortex and cerebellum [24,25,27,28].  By con-
trast, DCV also appears to be distinct from aneuploidy because of
the expanded DNA content histograms in the cerebral cortex that
are less prominent in the cerebellum, suggesting an independent
mechanism for increased DNA content.

These technical approaches, along with others in development,
have allowed assessments of single brain cells, demonstrating
genomic mosaicism amongst cells of the brain – and likely other
tissues and cells, including stem cell lines [47,48] – thus redefining
the genomic organization of the brain from homogenously uniform
to a complex genomic mosaic. These data underscore a need to
consider individual genomes in cellular function in the normal and
diseased brain, as well as the effects of identified genes operating
in varied genomic surroundings.

2.2. Mosaic aneuploidy in the non-diseased brain

The first report of widespread genomic mosaicism came from
studies of aneuploidy in mice, which revealed that approximately
33% of proliferating cerebral cortical neural progenitor cells (NPCs),
isolated from the ventricular zone of the embryonic brain [23], were
aneuploid. A range of other neurogenic regions generate aneu-
ploid cells, including cerebellar NPCs that represent ∼15% of mitotic
cells at postnatal day (P) P0 and ∼21% at P7 [17,25]. This somat-
ically derived form of genomic variation is characterized by the
apparently stochastic loss or gain of all chromosomes, creating a

genomic mosaic that displays a predominance of hypoploidy over
hyperploidy [23]. During periods of cell division, mosaic aneuplo-
idy in NPCs results from chromosomal segregation defects (lagging
chromosomes, non-disjunction and supernumerary centrosomes)
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Fig. 1. Schematic of genomic mosaicism analysis techniques. (A) Cells from cycling populations may  be arrested in metaphase for either chromosome spread enumeration
by  counting DAPI-stained chromosomes (bottom left), or full karyotype analysis by SKY (bottom right). (B) Non-cycling or interphase cells are hybridized with chromosome-
specific  FISH probes (e.g., the chromosome 8 and 16 point probes shown here in red and green, respectively). Euploid cells, disomic for both chromosomes, would display
2  dots of each; here, both nuclei are disomic for chromosome 8, while the nucleus on the left is monosomic for chromosome 16 and the nucleus on the right is trisomic for
chromosome 16. (C) Isolated cells and nuclei are stained to saturation with dyes like the DNA-intercalating dye Propidium Iodide or DRAQ5 for flow cytometric analysis. The
prominent peak of the resulting DNA content histogram contains cells in the G0/G1 phase of the cell cycle (2N DNA content); S phase (2 < N < 4) and G2/M (4N) phase are
distinguishable on the linear scale of the x-axis. (D) Hetergeneous DNA content histogram from human frontal cortical nuclei (green, red and blue are separate individuals)
stained  with propidium iodide, showing broad bases and right-hand shoulders. Chicken erythrocyte nuclei (CEN) were included as an internal reference standard and control.
( ) hist
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E)  Overlay of representative lymphocyte (green), cerebellar (red) and cortical (blue

dapted with permission from Peterson et al. [64] and Westra et al. [29].

uring mitosis [26,49]. Some mosaically aneuploid cells remain
apable of differentiating into neuronal and glial lineages [17], and
an survive into the adult brain [23], where they can be integrated
nto active neural circuitry [18]. In the mosaic landscape of the CNS,
he genomic diversity of aneuploid cells, and the subsequent dif-
erences in gene expression profiles [17,50–52] suggest that a great
eal of cellular variability and diversity exists without negatively

mpacting the high functionality of the system.
In the human CNS, the same trends have been reported: the

enomic variation caused by aneuploidy in the developing brain

eaches 30–35%, while most other tissues display low, albeit
etectable, levels of aneuploidy [20,28].  While the total amount of
neuploidy in the mature human brain remains unknown, reflect-
ng both the size of the brain and the limitations of current
ograms displaying an area of increased DCV unique to the cortical sample.

evaluation techniques, several studies provide evidence that a sig-
nificant population of aneuploid cells is also present in the adult
human brain. Rehen and colleagues tracked chromosome 21 in
neurons and non-neuronal cells from the frontal cortex and hip-
pocampus of non-diseased human brains (aged 2 through 86), using
dual-locus hybridization that combined a chromosome paint with
a FISH point probe for increased specificity, reporting a rate of
∼4% aneusomy for chr 21, with monosomy more frequent than
trisomy [24]. Several subsequent studies have attempted to give
a more complete analysis of the aneuploidy rate in non-diseased

adult human brains by analyzing several chromosomes, including
21, using mixes of multiple enumeration probes or ICS-MCB. These
studies reported lower frequencies of aneuploidy (0.1–0.8% on
average) for an estimated total aneuploidy level of 10% [16,27,53].  It
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s critical to note that all of these studies suffer from: (1) an inability
o objectively identify trisomy – subjectivity is inherent in sco-
ing ambiguous hybridization patterns; (2) an inability to precisely
ompare the same cell types and brain regions between different
ndividuals; and (3) severe limitations of sample size, as interro-
ation of even 10,000 cells represents less than 0.000001% of the
ore than 1 trillion cells in the human brain. The differences in total

bserved aneuploidy levels may  be complicated by the precision of
he techniques used to evaluate aneuploidy, discussed above. What
an be concluded is that developmental aneuploidy amongst NPCs
s robust, while aneusomies in adult brains unambiguously exist but
t levels that require further clarification to determine aneusomy
ates for all chromosomes simultaneously.

.3. Functions of neural mosaic aneuploidy

The functional significance of neural mosaic aneuploidy is
eginning to emerge. Aneuploidy has clear cellular and organismal
onsequences, as seen in analyses of genomically unstable can-
ers and constitutively aneuploid diseases like Down syndrome
54–56]. As noted above, aneuploidy in cells is known to affect
ene expression compared to euploid counterparts in a range of
rganisms, from yeast to mammals [17,50–52,57–59]. Aneuploidy
an affect a range of cellular processes including survival, prolifera-
ion potential, and protein imbalances [57,60–63].  The integration
f adult aneuploid neurons into the circuitry of the normal brain
18] therefore suggests the potential of these neurons to influence
ormal brain functions. However, proven consequences of mosaic
neuploidy in the CNS have been difficult to establish because of
he difficulty in identifying the mechanistic link between a spe-
ific karyotype and an identified function in a living cell. Not only
ave aneuploidies been overwhelmingly studied on fixed, non-

iving cells therefore precluding functional studies, but the loss
r gain of a chromosome affects the expression of all genes and
egulatory regions therein, creating an intricate web of intercon-
ected consequences. Use of GFP reporters integrated into a defined
hromosome have enabled gene expression analyses on cells with
efined aneusomy (with the associated loss of GFP) vs. normal cells,
nd this approach indicates that aneuploidies can alter gene expres-
ion profiles within seemingly homogenous populations of neural
ells [17]. In light of these observations, it would be surprising if
osaic aneuploid cells within the brain did not have functional

onsequences. Moreover, it is notable that aneuploidies are species-
pecific by virtue of unique chromosome organization and number
hat in part define a species. Thus, gains and/or losses of identified
hromosomes within one species would be expected to have non-
dentical, albeit possibly overlapping effects on the most closely
elated chromosome from another species (i.e., based on the degree
f synteny between chromosomes of the compared species).

Recent studies on the functional consequences of neural aneu-
loidy identified effects of mosaic aneuploidy on developing NPCs
64], wherein identified forms of aneuploid cells are differentially
liminated by caspase-mediated programmed cell death (PCD).
hese data support a mechanism of cell selection based on somati-
ally generated genomic variation produced by aneuploidy [64,65].

ithin the developing murine brain, PCD eliminates cells to control
erebral cortical shape and size [66–70].  Blocking PCD, mediated by
ither the effector caspase-3 or the initiator caspase-9, produces
evere exencephaly, an expanded ventricular zone, NPC hyperpla-
ia, and death [71–77].  Remarkably, suppression of PCD by genetic
eletion of either caspase-3 or caspase-9, or through pharmaco-

ogical inhibition of caspases, results in a concomitant increase

n total aneuploidy in mitotic and post-mitotic cerebral cortical
ells, as well as in “extreme” forms of aneuploidy (operationally
efined as cells with a gain or loss of greater than 5 chromo-
omes; nullisomies, where both copies of the same chromosome
elopmental Biology 24 (2013) 357– 369

are lost; and the coincident losses and gains of chromosomes)
[64]. Interestingly, comparatively mild forms of aneuploidy (cells
that gained or lost fewer than 5 chromosomes) remained rela-
tively unchanged, indicating preferential effects of PCD in removing
extreme forms of neural cell aneuploidy while maintaining mildly
aneuploid and euploid populations. Changes in mosaic aneuplo-
idy levels and forms produced by reducing PCD likely contribute to
the phenotype, including early postnatal lethality, of caspase-null
mutants [71,72]. These data provide the first evidence of functional
consequences for distinct forms of mosaic aneuploidy during CNS
development, as extreme forms of aneuploidy – hypoploidy and
hyperploidy – are eliminated by PCD, contrasting with survival of
mildly aneuploid and euploid cells. Mosaic aneuploidies create –
by definition – genomic diversity amongst populations of brain
cells, which would be expected to have functional consequences
based on changes in gene expression produced by aneuploidy
[17,57,59–62]. Maintenance of seemingly neutral or beneficial ane-
uploidies [78] and euploid cells may therefore be the end-result
of selective pressures that are a consequence of mosaic, somatic
genomic alterations during CNS development [64]. The concept of
beneficial aneuploidies is particularly intriguing, in that the loss
or gain of the chromosome may  provide some ability to the cell
that makes it more “fit” than other cells from the same organism
(for example, increased stress resistance or an enhanced functional
capacity within a neural network). The difficulty of linking an aneu-
ploid event with a particular function, as mentioned above, has thus
far limited the identification of a specifically beneficial set of aneu-
ploidies, but it is important to note that there is a fine line between
fitness and detriment – a cell with decreased response to stress sig-
nals or cell death triggers, may  share these traits with a cancer cell.
Studies to identify functional consequences of particular aneuploi-
dies will be essential in understanding roles for aneuploid cells in
the CNS, and the selective pressures that may  allow maintenance
of mildly aneuploid states.

The existence and prevalence of mosaic aneuploidies is proof
of a normally mutable genome, and it would therefore be antic-
ipated that other forms of genomic change could exist in cells
of the brain. Following the demonstration of mosaic aneuploi-
dies, the identification of possibly amplified repeat elements like
LINE1 retrotransposable elements was  reported [79,80] that have
been proposed to “jump” amongst neurons. However, this mecha-
nism may  not occur sufficiently to account for increased diversity,
at least within the human cerebral cortex [29,44]. More broadly,
the identification of DCV that is best manifested as DNA gains
within the human cerebral cortex, encompasses aneuploidies, pos-
sible LINE retrotransposons, as well as other genomic changes. The
actual origins of DCV are not known but could involve a range
of reported structural variants that include not only aneuploidy,
but also somatic versions of copy number variation (CNV) [81]
and other alterations to the genome, in view of the evidence for
genomic, rather than extragenomic, origins of the increases in DNA
content [29].

2.4. Mosaic aneuploidy in pluripotent stem cell lines

Mosaic aneuploidy has been clearly demonstrated in NPCs in
the CNS, but the effective study of its functional consequences
is limited, as noted above, by available experimental paradigms.
Human embryonic stem cells (hESCs) and induced pluripotent stem
cells (iPSCs) offer an attractive in vitro system to examine cellular
processes that could be affected by mosaic aneuploidy, includ-
ing differentiation, development, and neurological models. This

approach has been supported by the observation that stem cells
also show genomic heterogeneity produced by aneuploidy or other
genomic alterations like CNVs [47,48,82–86]. Culture-induced ane-
uploidies have been observed in hESCs [87,88] – in particular, gains
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f chromosomes 12, 17, 1, or X have been reported, which may
rise by imparting a selective growth or survival advantage to cells
ith these karyotypes; cells with these recurrent gains can over-
helm the culture, leading to a clonal constitutively aneuploid cell
opulation (i.e., all cells of the culture exhibit the same aberrant
aryotype) [78]. In contrast, consistent with observations on mouse
S cells [86], a recent study found that ∼18–35% of cells within

 given hESC line show mosaic aneuploidy, suggesting that the
tochastic loss and/or gain of chromosomes is an inherent char-
cteristic of stem cell biology [48], and this is also consistent with
esults from analyzing NPCs. In this study, six commercially avail-
ble hESC lines and an iPSC line derived from fibroblasts showed
ignificant levels of mosaic aneuploidy, independent of passage
umber and cell culture conditions (varied media, supplements and
ubstrates, and investigators) [48]. It is important to emphasize the
ifference between the stochastic generation of mosaic aneuploidy
ersus clonal constitutively aneuploid karyotypes in long-term cul-
ure, particularly with respect to stem cell usage as a therapeutic.

osaic aneuploidy mimics the genomic variability observed in vivo
nd likely contributes to the normal phenotypic heterogeneity of
ene expression patterns [89,90]. Devalle and colleagues suggest
hat mosaicism in stem cell culture may  be well tolerated as cells
an respond divergently to a range of stimuli, but the low levels
nd the random nature of this aneuploidy does not impart a selec-
ive clonal advantage to cells. Conversely, inundation of a culture
y cells with clonal constitutive changes, arising from adaptations
o stressful or unhealthful environments [78], represents a chal-
enge for stem cell safety and usage in vivo. Such changes have
een correlated with cancers, such as the loss of chromosome 10,
ain of chromosome 7 or chromosome 1p and 19q deletions in
uman gliomas [54,56,91–94], as well as the identification of can-
er related genes on the most common aneuploid chromosomes in
ESC culture [87,95,96].  The carcinogenic risks that mosaically ane-
ploid hESCs pose to transplantation therapies – as well as within
osaic populations in the developing and adult brain – remain to

e determined, but raise the formal possibility of aneuploid progen-
tor cell populations as a source of cancer stem cells in the brain, as

ell as other tissues. These issues deserve further analyses, espe-
ially where transplantation is designed to incorporate cells for
he lifetime of an individual, as would be desired for neurons. The
ffects of transplanting stem cells or their derivatives having iden-
ifiable genomic mosaicism can be gleaned from studies linking
europathological effects to aneuploidy, as discussed next.

. Linking genomic mosaicism and brain diseases

.1. Down syndrome

Three human constitutive autosomal trisomies are compatible
ith live birth – trisomy 13 (Patau’s syndrome) [97], 18 (Edward’s

yndrome) [98], and trisomy 21 (Down syndrome (DS)) [99–101].
he severity of these chromosomal disorders suggests an inverse
orrelation between the amount of genetic material gained vs. the
everity of the resultant phenotype and organismal fitness [52]. The
ost common chromosomal disorder is Down syndrome, in which

he smallest autosome (21) is duplicated to produce a trisomy.
risomy of chromosome 21 results in abnormal brain develop-
ent (along with non-CNS malformations) including reduced brain

ize with fewer neurons, leading to moderate to severe mental
etardation, and early-onset Alzheimer’s disease (AD)-like clini-
al signs and neuropathology [102,103].  These traits can at least

n part be attributed to the triplication of 33 genes in the DS critical
egion (DSCR) of chromosome 21, leading to increased gene dosage
nd imbalances in affected genetic regulatory circuits [104–106].
he DSCR triplication as typically identified from peripheral blood
elopmental Biology 24 (2013) 357– 369 361

or other non-CNS tissues may  occur in several ways: complete
trisomy, which 95% of DS patients have [100,101,107];  mosaic
aneuploidy of intermixed cells of disomic and trisomic chromo-
some 21, accounting for ∼2% of DS patients [108]; rarer partial
trisomy of regions greater than 5 Mb;  and microtrisomies of 3–5 Mb
regions generated by unequal meiotic crossovers, the prevalence
of which is not known because of detection difficulty by standard
cytogenetics [55].

Within the DSCR, studies have identified several candidate
genes that may  impact the neurological and cognitive dysfunctions
of DS (Table 1), from developmental brain defects to the early onset
of AD-like neurodegeneration: Amyloid precursor protein (APP),
Superoxide dismutase 1 (SOD1) [105], Regulator of calcineurin
(RCAN1 or DSCR1)  [106,109,110],  and Dual-specificity tyrosine-(Y)-
phosphorylation regulated kinase 1A (DYRK1A) [106,111–113].  Of
these, APP is best-known as a key component of senile plaque for-
mation in AD (discussed below). SOD1 protects against the free
radical superoxide anion O2

− by reducing it to hydrogen peroxide
(H2O2) and O2 in non-diseased individuals. The over-expression
of SOD1 in DS is thought to create an imbalance in the free radi-
cal detoxication system leading to oxidative stress (OS) [114–116],
which in turn promotes DNA damage and chromosomal nondis-
junction that may  lead to aneuploidy, and increased cell death
contributing to abnormal brain development and mental retarda-
tion [113,117,118].

RCAN1,  or DSCR1,  is thought to play a role in brain develop-
ment, long-term potentiation, and memory, and is significantly
elevated in both DS and AD [119–121]. Like SOD1, RCAN1 is thought
to play a role in the OS response: the short-term induction of
one highly-expressed neuronal isoform (RCAN1.1L) protects the
cell from OS-induced apoptosis, while its long-term expression or
over-expression, as in DS, promotes neuronal susceptibility to OS-
induced apoptosis [110,122–124].  In addition to the OS response
and neuronal death, RCAN1 has other functions that may  pro-
mote the AD neuropathology seen in DS adults. Brain-expressed
RCAN1 isoforms can both inhibit calcineurin [109,121],  a ser-
ine/threonine phosphatase, and induce glycogen synthase kinase
(GSK)-3� activity [125]. This is relevant as these enzymes regulate
the phosphorylation of microtubule-associated protein Tau, sug-
gesting that RCAN1 contributes to Tau hyperphosphorylation and
the formation of AD neurofibrillary tangles [125,126].  Intriguingly,
the over-expression of RCAN1 can also be induced by amyloid-
�1–42, the cleaved peptide product that comprises AD plaques
[119], providing another link between this DS gene and AD.

The serine/threonine kinase DYRK1A is also overexpressed in
the DS brain, and has numerous links to DS phenotypes. DYRK1A
protein modulates several transcription factors involved in an
array of functions during development and adulthood: postem-
bryonic neurogenesis, dendritic development, synaptic plasticity
and memory [111,127],  while over-expression leads to signifi-
cant impairment of spatial learning and memory [106,113,128].
The combined overexpression of DYRK1A and RCAN1, mentioned
above, has a cooperative effect on the dysregulation of devel-
opmental transcription factor NFAT, contributing to DS neural
deficits [129]. Increased DYRK1A kinase activity also has direct,
gene dosage-dependent effects on neurofibrillary tangle formation
in neurodegeneration, as DYRK1A directly phosphorylates Tau at
11 sites and primes Tau for further phosphorylation by GSK-3�,
enhancing Tau self-aggregation [111,112,130,131].  Compounding
the effects of DYRK1A neurofibrillary degeneration in DS, as sev-
eral recent studies have reported, DYRK1A-mediates disruption of
Tau RNA alternative splicing. Inclusion or exclusion of Tau exon

10 gives rise to two isoforms, the imbalance of which contributes
to neurofibrillary degeneration; normal DYRK1A phosphorylation
promotes exon 10 splicing [132], but upregulated DYRK1A activity
suppresses exon 10 inclusion and disrupts the isoform ratio [133].
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Table 1
Genes and chromosomal regions associated with neuropsychiatric disorders disorders that may  be altered by genomic mosaicism.

Disease Locus Gene Protein Role of region

Down syndrome 21q21.3 APP Amyloid precursor protein Senile plaque formation
21q22.11 SOD1 Superoxide dismutase 1 Oxidative stress response
21q22.12 RCAN1/DSCR1 Regulator of calcineurin 1 Oxidative stress response
21q22.13 DYRK1A Dual-specificity tyrosine-(Y)-phosphorylation

regulated kinase 1A
Protein phosphorylation, including Tau

Alzheimer’s disease 21q21.3 APP Amyloid precursor protein Senile plaque formation
14q24.3 PSEN1 Presenilin 1 Regulator of gamma-secretase activity
1q31-q42 PSEN2 Presenilin 2 Regulator of gamma-secretase activity
17q21.1 TAU Microtubule-associated protein tau Neurofibrillary tangle formation

Schizophrenia 15q11.2 UBE3A; NIPA1 Ubiquitin protein ligase 3A; Non imprinted in
Prader-Willi syndrome 1

Region implicated in Angelman syndrome or
Prader-Willi syndrome

1q21.1 Deletion or duplication
15q13.3 Microdeletion
16p11.2 Duplication
16p13.1 Duplication
22q11.2 Microdeletion resulting in DiGeorge syndrome

Autism 15q11-13 GABRB3; GABRA5 �-Amino butyric acid (GABA) receptor-type A
subunits 3 and 5

GABAergic neuron development

Xp22.11-p21.2 IL1RAPL1 Interleukin 1 receptor accessory protein-like 1 Hippocampal memory system
Xq13.1 NLGN3 Neuroligin 3 Synapse formation and remodeling
Xp22.33 NLGN4X Neuroligin 4, X-linked Synapse formation and remodeling
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The ties between these genes, amongst others on chromosome
1, and the phenotypic traits of Down syndrome illustrate the
ene expression and phenotypic consequences of genomic dosage
mbalances caused by aneuploidy, and potentially altered by other
orms of somatic genomic mosaicism. While functional analyses of
hromosome 21 genes in DS continue, the effects of trisomy 21 also
ave intriguing implications for understanding AD.

.2. Alzheimer’s disease (AD)

AD is the most common dementia, impacting an estimated 5.4
illion people in the United States alone (1 in 8 people over the

ge of 65) [134]. AD neuropathology includes the accumulation of
laques composed of amyloid �, neurofibrillary tangles contain-

ng Tau, synaptic loss and neuronal death in several brain regions,
ncluding the hippocampus, and frontal and entorhinal cortices,
eading to progressive cognitive decline. Familial AD makes up
5% of all cases, with early onset (<60 years) caused by inher-

ted autosomal dominant mutations in predominantly 3 genes
Table 1): Amyloid precursor protein (APP) on chromosome 21,
hich is cleaved to form the Amyloid (A) � peptide found in

myloid plaques; presenilin 1 (PSEN1) on chromosome 14, and
resenilin 2 (PSEN2) on chromosome 1, which contribute to the
atalytic activity of the A�-cleaving enzyme �-secretase. Late-onset
>60 years) sporadic AD arises from a less understood set of genetic,
pigenetic, and environmental risk factors [19,135,136], but shares
he same neuropathology with familial cases.

The classic theory of AD neuropathology is the amyloid cascade
ypothesis: aggregation of a 42 amino acid peptide, A�1–42, which
esults from targeted APP cleavage. This aggregation leads to plaque
ormation, triggers a microglial and astrocyte-mediated inflamma-
ory response, promotes Tau neurofibrillary tangle formation and
ventually leads to neuronal death and patient dementia [137,138].
amilial mutations in APP or the PSEN genes drive this aggrega-
ion in early onset disease, while in late-onset sporadic disease,
ge-dependent A� accumulation is proposed to cross a threshold

eading to disease onset. Down syndrome brains were vital in for-

ulating this hypothesis, as A� was first identified in DS plaques
nd later found to be the same peptide isolated from AD brains
139,140].  The A� precursor, APP, was mapped to chromosome 21
y benzimidazoles 1 homolog Spindle checkpoint regulation

[141–143], creating a stronger link between the increased gene
dosage in DS produced by trisomy 21 and the earlier AD onset
observed in DS patients [144].

Analyses of the chromosomal complement in AD patients,
searching for a link between chromosome 21 gene dosage and
the disease, have yielded mixed and conflicting results. Exami-
nations of sporadic and familial AD samples utilized restriction
fragment length polymorphisms (RFLPs) to interrogate duplica-
tions and failed to observe dosage differences [145,146].  A more
recent study has shown the duplication of the APP locus in famil-
ial early-onset AD using the much more sensitive quantitative PCR
as well as FISH [147]. Several studies in peripheral lymphocytes
or cultured fibroblasts from both sporadic and familial AD revealed
low-level trisomy 21 in AD compared to controls [148–150], as well
as an increased frequency of micronucleus formation in lympho-
cytes, resulting from chromosome missegregation [151]. Within
the brain, Iourov and colleagues report a significant increase in
aneuploidy of chromosome 21 in AD brains (from 1.7% in controls
to 10.7% in disease) using ICS-MCB, but puzzlingly not with FISH.
The group also points out that monosomy is as prevalent as trisomy
[16], consistent with reports of both chromosomal 21 monosomies
and trisomies in neurons from the frontal cortex of non-diseased
individuals [24], yet incongruous with evidence of APP locus gain,
rather than loss, in AD [152]. Mosch and colleagues also tracked
aneuploidy in the AD brain compared to the non-disease brain
by chromosome 17 FISH, and report that while monosomy lev-
els remain consistent, trisomy 17 levels are increased in the AD
brain [153]. These data, the authors suggest, support a hypothe-
sis quite distinct from the amyloid cascade – the hypothesis that
aberrant cell cycle re-entry drives DNA replication and leads to AD
neuropathology [154–156].

This pathogenic cell cycle hypothesis suggests that mature, fully
differentiated neurons are prompted by internal and external fac-
tors to leave the senescent G0 phase and re-enter the cell cycle. This
postulated reactivation of the DNA replication pathway, while con-
trary to classical belief, has received some support by the ectopic

neuronal expression of cell cycle proteins including cyclins D and
E, cyclin-dependent kinase (cdk) 4, Ki-67, and DNA polymerase
[157–165]. The cyclin D/cdk4 complex regulates progression into
G1, in response to mitogenic triggers, while cyclin E expression
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rives the transition from G1 into S phase, when DNA replication
ccurs [166]. Cell cycle re-entry in the AD brain is not thought to
each completion, but rather terminates after S phase [167], which
redicts the existence of neurons with 4 N DNA content. Westra
nd colleagues performed detailed DNA content flow cytometry
ombined with FISH analyses of neuronal and non-neuronal nuclei
solated from AD and control brains to assess the presence of
etraploid neurons that should be the result of full chromosomal
uplication, with a 4 N karyotype following cell cycle replication. By
ontrast, no 4 N neurons were detected, while some non-neuronal
ells did show evidence for tetraploidy [152], consistent with glial
ell division. In addition to the lack of tetraploid neurons observed
n AD brains, cell cycle protein expression shows aberrant sub-
ellular localization whereby they are detected in the cytoplasm
ather than the nucleus [158,168],  suggesting that if indeed cell
ycle re-entry is occurring, it is not occurring in a classical manner.

A “two-hit” hypothesis has attempted to integrate dysregulation
f mitogenic processes, which contribute to somatic genomic vari-
tion including aneuploidy, and oxidative stress that accompanies
ging into a cohesive explanation of AD etiology [117,167,169,170].
n this hypothesis, cell cycle protein expression is thought to
recede the formation of plaques and neurofibrillary tangles [163],
ut several AD-linked gene products have roles in cell cycle events
nd the missegregation of sister chromatids. Both APP and the
�1–42 cleavage product have been identified as mitogenic in vitro

171], inducing the phosphorylation of proteins including Tau
119,172] and disrupting the mitotic spindle leading to defec-
ive chromosome segregation [173–175]. Presenilins also mediate
remature chromosome separation. These proteins localize to
inetechores and centrosomes [176], and when overexpressed or
utated, directly lead to chromosome missegregation and low-

evel aneuploidy [148,177].  Aneuploidy, like that of chromosome
1, is a secondary result of AD according to this hypothesis, that
ould then work in a positive feedback loop to increase APP

ggregation and neuronal cell death [167,170,178].  Oxidative stress
epresents the second hit of the hypothesis. OS increases with
ge [156,167],  precedes A� deposition in AD and DS [179–183],
nd is linked to neurodegeneration [117,118].  Oxidative stress and
itogenic misregulation are postulated to act as simultaneous and

omplementary triggers for AD. OS responses may  include cell cycle
e-entry and activation of AD-related proteins like APP, Tau, and the
SENs, while resultant aneuploidy or related gene dosage effects
rive amyloid deposition, Tau aggregation, decreased OS response,
nd neurodegeneration [118,167,184].  Genomic variation present
n the normal brain preceding the onset of disease may  affect the
esponses of cells to environmental factors like oxidative stress,
aking them more or less susceptible to the onset of disease. Thus,

he level of reaction to the trigger would depend on the initial
enomic state of the cell, making an understanding of genomic
osaicism essential for clarification of disease progression.
In all these hypotheses – the amyloid cascade, DNA replication,

nd the two hit hypothesis of AD etiology – key questions remain
nanswered about what makes specific brain regions vulnerable to
D onset, particularly in the case of sporadic AD. Down syndrome
rovides the clearest example that disease-promoting increases in
ene dosage can be produced by aneuploidy (trisomy 21), however
he lack of clear evidence for this process in AD indicates the need to
etter understand the relationship between mosaic genomic alter-
tions and disease.

.3. Schizophrenia
Schizophrenia is a complex multigenic neuropsychiatric dis-
rder with onset in the late teens or early twenties that is
haracterized by symptoms of psychosis that may  include halluci-
ations, delusions, decreased emotional expression, and behavioral
elopmental Biology 24 (2013) 357– 369 363

deficits. The strongest established risk factor is family history of the
disease, with estimates of 70–90% heritability based on monozy-
gotic twin and sibling studies [185–187], but the disease does not
display Mendelian inheritance. While genome-wide association
studies have identified common polymorphisms in schizophre-
nia that confer a small to moderate disease risk [188–190], the
common disease-rare variant (CD-RV) model suggests that the
heterogeneity of the disease arises from multiple rarer variants
with higher risk [191,192].  Six constitutive rare CNVs (both sub-
chromosomal duplications and deletions) that strongly associate
with the disease have been identified by microarray analyses in
large cohorts of schizophrenic patients (Table 1): 1q21.1, 15q11.2,
15q13.3, 16p11.2, 16p13.11, and 22q11.2 [190,193–195].  The
22q11 microdeletion (a 3Mb  loss) is the best characterized, as
it results in velocardiofacial syndrome/DiGeorge syndrome, caus-
ing cognitive deficits, and mental disorders like schizophrenia in
approximately 30% of those who  have the deletion [195–197].
Other rare CNVs have a much lower frequency in schizophre-
nia: deletions of 1q21.1 and 13q13.3 occur in 1 in 500 patients
versus 1 in 5000 controls; duplications in 16p13.1 and 16p11.2
occur in 1 in 300 patients versus 1 in 1000 or 1 in 3500 con-
trols (respectively). These CNVs are associated with approximately
10-fold increased risk of schizophrenia, but have low penetrance
– calculated between 2 and 7.4% for most CNVs [198]. The phe-
notypic spectrum of the CNVs linked to schizophrenia remains
to be thoroughly investigated, particularly in terms of the neu-
rodevelopmental consequences of the deletions and duplications.
Additionally, there are several CNVs that may  link schizophrenia
to other developmental disorders, such as autism, that warrant
investigation.

In addition to these CNVs, several studies have reported
increases in aneuploidy associated with schizophrenia. Sex chro-
mosomal abnormalities have been observed in lymphocytes from
small numbers of patients compared to controls, analyzed primar-
ily by metaphase spreads. Karyotypes of 47, XXX and 47, XXY
were most commonly associated with increased schizophrenia,
with schizophrenic patients displaying aneuploidy at rates four
to six times that of the general population [199,200].  Occasional
patients also had mosaicism within examined lymphocytes (45,
X/46, XX; 45, X/46, XY; 46, XX/47, XXX; 46, XY/47, XXY) [19,199].
It is important to note that aneuploidy does not seem to be a com-
mon  characteristic of all schizophrenic patients, as less than 2% of
schizophrenic patients also had chromosomal anomalies in periph-
eral lymphocytes [199]. Only Yurov and colleagues have sought to
address aneuploidy levels in the brain, reporting both low-level sex
chromosome and chromosome 1 mosaic aneuploidy in schizophre-
nia [201,202].  In the first study, two individuals in an eight-sample
cohort had chromosome X trisomy (cells with fewer than 2 sig-
nals were excluded, to rule out pseudo-monosomies), although
very low numbers of brain cells were counted (200 nuclei) [201].
A  more detailed study using both multicolor FISH probes against
several chromosomes (including chromosome 1 and X) and ICS-
MCB  probes detected low-level mosaic chromosome 1 aneuploidy
in 2 of 12 schizophrenic brain samples examined, but did not reveal
any sex chromosome anomalies [202]. The small number of total
schizophrenic brains analyzed that showed chromosomal aneu-
ploidy speaks to the widespread heterogeneity of the disease, and
illustrates the need for more comprehensive, detailed study on the
role of aneuploidy in neuropsychiatric disorders.

3.4. Autism
Autism is another complex neurodevelopmental disorder
broadly characterized by impaired ability to interact socially, ver-
bal and nonverbal communication deficits, and a restricted range
of behaviors and interests, and it is estimated to affect 6 in
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000 births, with four times as many males diagnosed as females
203,204]. Autism [or Autism Spectrum Disorders (ASD)] can be
ivided into idiopathic or familial cases. Familial cases, caused by
enetic anomalies including Fragile X and Rett syndromes, tuber-
us sclerosis, and unbalanced chromosomal rearrangements, make
p 10–15% of ASD patients [205,206].  The remaining 85–90% of
ases likely arise from unknown factors that may  include diverse
NVs and accompanying gene dosage alterations (chromosomal
icrodeletions and duplications are reported for 7.4% of ASD cases

205]), helping to account for the heterogeneous phenotypes of
utism and ASD [207]. Several cytogenetic abnormalities have been
dentified in children with ASD by both genome wide associa-
ion studies and comparative genomic hybridization [207–210]
Table 1). The most frequent recurrent chromosomal abnormal-
ty associated with ASD is a duplication of chromosome region
5q11-13, which is found in 1–3% of ASD cases [211]. This abnor-
ality occurs in the same chromosomal region as two  other

yndromes, Prader-Willi and Angelman, which are paternal or
aternal deletions (respectively) leading to distinct phenotypes,

ncluding neurodevelopmental deficits and poor motor control,
hrough genomic imprinting [212]. Potential genes in the ASD
egion of chromosome 15q11-13 are GABRB3 and GABRA5, �-amino
utyric acid (GABA) receptor-type A subunits 3 and 5, key receptor
ubunits in the development of GABAergic interneurons [211,212].
e novo CNVs associated with autism are rare, but continue to be

ound and characterized across several chromosomes [208,213]:
q21.1 [214]; 2p15-16.1 [215]; 7q22 [216]; 11p12-p13 and 11p14
213,217]; 16p11.2 [218,219];  17q12 [220]; and 22q11.2 [221].
egions identified on chromosomes 15, 16, and 22 have been
reviously mentioned for their association with schizophrenia
190,193–197], an intriguing connection between two  neuropsy-
hiatric disorders that remains to be understood.

The X chromosome has also been extensively studied for con-
ections with ASD. Secondary autism is common in Fragile X
atients [222], and men  with Klinefelter syndrome (a karyotype of
7, XXY) display more autistic traits compared to non-affected con-
rols [7,223].  Additionally, low-level mosaic chromosome X gains
ave been observed by FISH in peripheral blood cells from idio-
athic ASD patients [224]. Given the X chromosome disorder links
nd the observed 4:1 ratio of autism in males versus females, Zhao
nd colleagues suggest a “unified genetic theory of autism” – two
istinct modes of acquiring autism, wherein the male offspring of
ome families have a 50% risk of ASD because of X-linked dominant
ransmission with high penetrance, while most male offspring have
ow risk, and de novo CNVs may  contribute to autism [207,225].  To
xamine this model, a recent study of families with autistic children
rom the Autism Genetic Resource Exchange [226] provided evi-
ence that the chromosomal region Xp22.11-p21.2 is linked with
n autism predisposition, but inheritance through dominant trans-
ission remains unclear [227]. Proposed gene candidates in this

egion include the interleukin 1 receptor accessory protein-like
ene (IL1RAPL1), which is thought to be involved in neurotransmit-
er release and synaptic plasticity [227]; other ASD candidates on
hromosome X are two neuroligin genes that aid in synapse forma-
ion, NLGN3 and NLGN4X, both of which have been associated with
utistic behavior [228]. Even with implicated chromosomal regions
nd potential gene candidates, the etiology of ASD largely remains

 mystery. The potential for somatic genomic mosaicism within the
rain to account for the varied signals seen in ASD deserves further

nvestigation.

.5. Mosaic variegated aneuploidy (MVA)
MVA  is an autosomal recessive disease that, curiously, causes
osaic monosomy and trisomy throughout several tissue types

ncluding the brain [229]. While only 35 cases of MVA  have
elopmental Biology 24 (2013) 357– 369

been reported worldwide [229–232], clinical manifestations of
widespread organismal mosaic aneuploidy are well described,
including microcephaly, severe growth and mental retardation, a
high risk of cancer, and CNS malformations (e.g., Dandy–Walker
complex or migrational defects) [14,230,233–235]. Mosaic aneu-
ploidy in MVA  arises through premature centromere division –
split centromeres and splayed chromatids during metaphase –
from mitotic spindle defects, indicated by a lack of metaphase
arrest when treated with colcemid [15]. Screening of several MVA
pedigrees revealed mutations in BUB1B which encodes a key
mitotic spindle checkpoint protein BUBR1 that delays anaphase
[15,229,232] (Table 1). Wild type BUBR1 inhibits the anaphase-
promoting complex/cyclosome (APC/C) checkpoint, preventing cell
cycle progression when chromosomes are not properly aligned;
mutations have been identified in the kinase domain that phos-
phorylates APC/C as well as in the domain responsible for recruiting
other cell cycle checkpoint proteins [229]. However, BUB1B muta-
tions are not homogenous across all MVA  patients, suggesting that
other mitotic spindle genes may  lead to the same mosaically ane-
uploid karyotype [11,229,231].

4. Conclusions

Genomic mosaicism within the CNS represents a relatively new
frontier toward understanding the development and function of
the brain, as well as numerous pathological processes that afflict it.
Certain aneuploidies, including extreme forms like MVA  and DS, are
well recognized for influencing brain function, with clearly demon-
strated unambiguous consequences to altering genomic content;
studies of mosaic aneuploidy and its consequences in other disease
states is only just beginning. Changes observed in gene expression
associated with specific aneusomies within a single cell type of nor-
mal  brain cells implicate functional consequences for aneuploidy in
the non-diseased CNS as well, and recent analyses of the develop-
ing brain support distinct functions based upon karyotype, with
varied aneuploid forms differentially promoting cell survival or
death. Studies of aneuploidy in the non-diseased CNS question the
assumption that aneuploidy is in fact “abnormal” in the develop-
ment and function of certain cell lineages, and that it is deleterious
– views contradicted by the maintenance of aneuploid populations
in the normal brain. Indeed, some forms of aneuploidy may have
beneficial consequences for neural development and function; this
intriguing hypothesis will be addressed in the future by analyses
of living, aneuploid cells. Long-lived cells like post-mitotic neu-
rons may  be especially apt at utilizing genomic alterations to their
advantage, since they would not be under genomic constraints of
highly mitotic cell populations. The stable and seemingly perma-
nent changes produced by genomic alterations in a single neuron
could provide a mechanism for creating and stabilizing functional
mosaic populations within the brain, such as those constituting a
neural network.

Aneuploidies represent a major alteration to neural genomes,
but they are certainly not unique in this. The term DNA content vari-
ation or “DCV” has been proposed to encompass all of the different
forms of genomic changes that are likely to be present within cells
of the brain, from aneuploidy to putative mobile LINE elements, de
novo CNVs, and other forms of DCV as have been identified within
the frontal cortex. DCV within the frontal cortex that is distinct from
the pattern observed in the cerebellum from the same individual
also demonstrates regional differences in mosaicism, and supports
non-random mechanisms in the generation and/or maintenance of

this variability. It is notable that types of genomic changes are not
mutually exclusive: the genomic landscape could well be hetero-
geneous with DNA gains, losses, or coincident gains and losses from
each of the known sources of DCV.
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Our current understanding of the brain does not broadly inte-
rate the existence of genomic mosaicism, but future studies of
enomic mosaic alterations using DNA sequences from new single-
ell technologies, and strategies that seek to define the cell types,
ntercellular relationships and global patterns of mosaicism within
he brain would complement and expand our knowledge of CNS
orm and function. Similarly, the possible detection of alterations
o normally occurring genomic variation in a disease could iden-
ify risk factors, biomarkers and/or new therapeutic targets for the
reatment of neurological and psychiatric disorders, particularly for
ommon disease forms that share etiology but not causitive gene
ssociations with rarer familial disease forms. Genomic mosaicism
laces organizational uniqueness upon the brain, even within
yngenic organisms, which could provide a basis for behavioral
iversity within a population toward promoting its survival and
ptimal fitness.
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